Cold Acclimation and Freezing Tolerance (A Complex Interaction of Light and Temperature).
نویسندگان
چکیده
By comparing growth under five different temperature and irradiance regimes (20[deg]C and 800, 250, and 50[mu]mol m-2 s-1 and 5[deg]C and 250 and 50 [mu]mul m-2 s-1), we have examined the effects of light, temperature, and the relative reduction state of photosystem II on plant morphology, freezing tolerance (lethal temperature at which freezing injury occurs [LT50]), transcript levels of Lhcb and two cold-stimulated genes (Wcs19 and Wcs120), and photosynthetic adjustment in winter rye (Secale cereale L. cv Musketeer). We show, for the first time to our knowledge, that in addition to adjustments in photosynthetic capacity, nonphotochemical quenching capacity and tolerance to photoinhibition, the accumulation of the cold-induced transcript Wcs19, and the compact plant morphology usually associated with cold-hardening are correlated with the relative reduction state of photosystem II rather than with growth temperature or growth irradiance per se. In contrast, the acquisition of maximal LT50, as well as Lhcb and Wcs120 mRNA accumulation, appears to be dependent on both growth temperature and growth irradiance but in an independent, additive manner. The results are discussed with respect to the possible role of the modulation of chloroplastic redox poise in photosynthetic acclimation to cold-hardening temperatures and the attainment of maximal LT50.
منابع مشابه
ارزیابی تحمل به یخ زدگی ژنوتیپهای نخود (Cicer arietinum L.) در شرایط کنترل شده
The present experiment was aimed to evaluate the freezing tolerance of two cold tolerant (MCC426 and MCC252) and a cold susceptible (MCC505) chickpea genotypes. The study was carried out in a split-plot factorial design with three replications. Factorial arrangement of genotype and acclimation (acclimation and non acclimation) were imposed as main plot and temperatures (0, -4, -8, -12, 16, -20º...
متن کاملارزیابی تحمل به یخ زدگی ژنوتیپهای نخود (Cicer arietinum L.) در شرایط کنترل شده
The present experiment was aimed to evaluate the freezing tolerance of two cold tolerant (MCC426 and MCC252) and a cold susceptible (MCC505) chickpea genotypes. The study was carried out in a split-plot factorial design with three replications. Factorial arrangement of genotype and acclimation (acclimation and non acclimation) were imposed as main plot and temperatures (0, -4, -8, -12, 16, -20º...
متن کاملThe Influence of Light Quality, Circadian Rhythm, and Photoperiod on the CBF-Mediated Freezing Tolerance
Low temperature adversely affects crop yields by restraining plant growth and productivity. Most temperate plants have the potential to increase their freezing tolerance upon exposure to low but nonfreezing temperatures, a process known as cold acclimation. Various physiological, molecular, and metabolic changes occur during cold acclimation, which suggests that the plant cold stress response i...
متن کاملIntegration of low temperature and light signaling during cold acclimation response in Arabidopsis.
Certain plants increase their freezing tolerance in response to low nonfreezing temperatures, an adaptive process named cold acclimation. Light has been shown to be required for full cold acclimation, although how light and cold signals integrate and cross-talk to enhance freezing tolerance still remains poorly understood. Here, we show that HY5 levels are regulated by low temperature transcrip...
متن کاملEvaluation of Biochemical and Physiological Responses of Seven Olive Cultivars in Relation to Freezing Tolerance
Abstract: Temperature is one of the most important factors limiting the production and distribution of olive. Different olive cultivars show diverse responses to low temperature and so, the selection of cold tolerant cultivars is the most effective method to avoid frost damages. The main purpose of this study was to compare freezing tolerance of seven olive cultivars and to investigate the rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 114 2 شماره
صفحات -
تاریخ انتشار 1997